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Abstract

Using the equations of the dynamical mesoscale model developed previously [Ocean Modell. (2004) 8, 1–
30], we derive a mesoscale model in z-coordinates to be used in coarse resolution OGCMs. We present a
model for the eddy-induced velocities, mesoscale diffusivity, eddy kinetic energy, eddy potential energy,
residual diapycnal flux, velocity across mean isopycnals, Reynolds stresses, E-P, PV and RV fluxes.

Specifically, in the mean buoyancy equation, mesoscales give rise to two terms: an eddy-induced velocity
uM = (u+,w+) and a residual diapycnal flux R. While uM has received much attention, R has always been
taken to be zero. Physical and numerical arguments are presented to show that R is not zero. We present
the model results for both uM and R. The new expression for u+ contains four terms, the first of which has
the structure of the GM model while the remaining three terms are new. Several interpretations of the new
terms are given. The boundary conditions at z = �H, 0 are satisfied by uM and R, thus avoiding the need for
‘‘tapering schemes’’ employed thus far to amend the failure of models for uM to satisfy the proper boundary
conditions. We also present the model results for the mesoscale diffusivity and show that the predicted mag-
nitude and z-dependence are in accord with recent numerical models. The residual flux R gives rise to a
mesoscale-induced diapycnal diffusivity which in the ACC is larger than the diabatic one. The resulting
‘‘velocity across mean isopycnals’’ may thus significantly affect the dynamics of the thermocline (e.g., the
Munk–Wunsch advective–diffusive model). The predicted magnitude of this velocity is in an accord with
recent results from eddy-resolving codes.
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The presence of a non-zero residual flux R in the mean buoyancy equation implies that the effect of mes-
oscales in the T–S equations is not fully accounted for with only the eddy-induced velocity, as generally
done. Additional R-like diapycnal fluxes must be added to the T–S equations.

Mean momentum equations. Since the down-gradient model used in most OGCMs does not represent
mesoscales, the latter have not yet been accounted for. A model for the divergence of the Reynolds stresses,
the Eliassen–Palm fluxes, the PV (potential vorticity) and RV (relative vorticity) fluxes is presented. We
show that the Sverdrup vorticity balance is modified by mesoscales. In particular, while the standard Sverd-
rup relation does not allow meridional currents to cross the equator, the presence of mesoscales allows such
a possibility.
Published by Elsevier Ltd.

Keywords: Mesoscale modeling; Isopycnal and level coordinates; Bolus and eddy-induced velocity; R-term; Potential
and relative vorticity fluxes
1. Introduction

A satisfactory representation of the very energetic, �100 km size ocean mesoscale eddies in
coarse resolution OGCMs (e.g., Griffies et al., 2000) is still an open problem. Significant progress
was achieved when it was realized that mesoscale models had to reflect the fact that there is a huge
reservoir of mean potential energy MPE (Lueck and Reid, 1984; Huang, 2004) which, through
baroclinic instabilities, feeds mesoscales. It was therefore natural to model such process with a
down-gradient expression to represent the transfer of energy from MPE to eddy potential energy
EPE. The GM model (Gent and McWilliams, 1990, cited as GM) that was devised to explicitly
capture this important physical process, considerably improved the performance of coarse reso-
lution OGCMs (Gent and McWilliams, 1990; Danabasoglu et al., 1994; Böning et al., 1995; Hirst
and McDougall, 1996, 1998). These improvements have rekindled the interest in mesoscale mod-
eling and at the same time they revealed the complexity of the physical processes characterizing
mesoscales.

It is fair to say that since the appearance of the GM model the bulk of the work is represented
by numerical studies (both eddy resolving and coarse resolution ocean codes), as well as by heu-
ristic models (Böning et al., 1995; Beckmann et al., 1994; Danabasoglu and McWilliams, 1995;
Gille and Davis, 1999; Drijfhout and Hazeleger, 2001; McDougall and McIntosh, 2001; Karsten
and Marshall, 2002; Radko and Marshall, 2004a,b; Ferreira and Marshall, submitted; Olbers and
Visbeck, in press). While eddy-resolving codes have shed much led on the physics of mesoscales, it
is difficult to translate such information into a model usable in OGCMs. At the same time, heu-
ristic models cannot determine important parameters such as the mesoscale diffusivity and its
z-dependence. In this context, it is of interest the suggestion by Muller and Garrett (2002) that
any parameterization ‘‘must be specified as formulae rather than just numerical values’’. This
requirement acquires particular relevance in the case of mesoscales since eddy fluxes at a given
depth are functions of large scale fields not only at the same depth, but at all other depths (Muller
and Garrett, 2002), a non-local feature that is quite hard to model phenomenologically, as models
for the PBL (planetary boundary layer) have shown over the years (Cheng et al., 2002). Thus,
there is a need to construct a mesoscale model based on the dynamic equations governing the mes-
oscales. In contrast to the rather large literature of numerical simulations and heuristic models,
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theoretically based models of mesoscales are relatively few (Killworth, 1997; Smith, 1999; Duko-
wicz and Greatbatch, 1999), a reflection of the difficulty of the problem.

Thus far, it has also been assumed that mesoscales affect the mean buoyancy field and thus
the T–S equations, only via the eddy-induced velocities uM. In the language of several authors
(Andrews and McIntyre, 1976, 1978; Andrews et al., 1987; McDougall and McIntosh, 1996;
Greatbatch, 1998; Ferrari and Plumb, 2003) this is equivalent to assuming that the buoyancy
flux F is fully represented by its component along isopycnal (skew flux) while the flux orthog-
onal to it (residual flux) is zero. This explains why most of the models focused on finding a
suitable expression for uM. However, the following questions must be posed:

• Is the GM model for F(skew) complete?
• Is the residual flux F(residual) zero?
• How are the mean momentum equations affected by mesoscales?

The answer to the first two questions is negative. Using an eddy-resolving ocean code, Bryan
et al. (1999) showed that in addition to the GM term, additional terms must be present that
are ‘‘unrelated to thickness sources or sinks’’. Furthermore, Gille and Davis (1999) and McDou-
gall (2004) used eddy-resolving codes to show that the residual flux is as important as the skew
flux. This translates into a subset of problems which we now discuss.

First, consider the buoyancy skew flux F(skew) and the eddy-induced velocity uM = (u+,w+)
that represents its divergence, r � FðskewÞ ¼ uM � r�b.

• w+ must vanish at z = �H, 0. Since uM is divergence free, it follows that the divergence of the
column integral of u+(z) must vanish. This is usually interpreted as a reflection of the fact that
mesoscales are not supposed to exert a mean stress on the ocean but only to distribute the exter-
nal stresses that are applied to the surface. Since present models for uM do not satisfy this con-
dition, the problem has been dealt with using different tapering schemes (Danabasoglu and
McWilliams, 1995; Large et al., 1997; Visbeck et al., 1997; Gerdes et al., 1999; Killworth,
2001; McDougall and McIntosh, 2001) which affect the outcome of climate studies since they
modify the heat exchange between ocean and atmosphere,

• the mesoscale diffusivity km(z) is known to exhibit a distinct z-dependence. Visbeck et al. (1997),
Karsten and Marshall (2002), Ferreira and Marshall (submitted) and Olbers and Visbeck (in
press) have suggested heuristic models for km(z) but no theoretical derivation within a dynam-
ical model has thus far been presented,

• extant mesoscale models are local in that the eddy fluxes are expressed in terms of the gradients
of local variables. However, advection may also be caused by eddies that remain coherent over
distances much larger than those over which the gradients are constant. A non-local mesosacle
model is thus needed.

Second, consider F(res) = ezR. Thus far, it has always been assumed that R = 0 (Treguier et al.,
1997; Karsten and Marshall, 2002). However, since �R is the source of eddy potential energy, it
cannot be zero on physical grounds, a conclusion in accord with the results of several eddy-per-
mitting/resolving ocean codes (Böning and Budich, 1992; Beckmann et al., 1994; Gille and Davis,
1999; McDougall, 2004). Furthermore, since N�2oR/oz acts as an adiabatic diapycnal velocity to
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be added to the diabatic part, mesoscales may affect diffusion–advection models like the Munk–
Wunsch model. The presence of a non-zero residual flux R in the mean buoyancy equation implies
that the effect of mesoscales in the T–S equations is not fully accounted for by adding only the
eddy-induced velocities, as generally done. Additional R-like terms must be present in the T–S
equations.

Third, consider the mean momentum equations. In this case, the modeling efforts have made less
progress. In fact, most OGCMs only employ a down-gradient of momentum which is not meant
to represent mesoscales but processes at smaller scales. For example, McWilliams (1996) has
noted that ‘‘the default sub-grid mesoscale parameterization form of horizontal momentum dif-
fusion is inadequate for it fails to represent the qualitatively important feature of wind-driven
gyres’’. This means that to all practical purposes mesoscales have not yet been accounted for in
the mean momentum equations. In addition, the models that have been suggested (Lee and Leach,
1996; Gent and McWilliams, 1996; Greatbatch, 1998; Wardle and Marshall, 2000; Plumb and
Ferrari, 2004) were formulated in terms that cannot be readily used in z-coordinates OGCMs.
However, irrespectively of any specific mesoscale model, the non-linearity in the original momen-
tum equations implies that mesoscales momentum flux must exhibit the horizontal gradient of the
mesoscales kinetic energy that observations show to be large (Schmitz, 1976; Wyrtki et al., 1976,
Fig. 4; Wunsch, 1981).

In a recent paper (Canuto and Dubovikov, 2004, cited as OM1), a dynamical model for meso-
scale eddies was presented in isopycnal coordinates. The hope was that such an approach would
catch the major features of mesoscales described above without the need of empirical adjustments.
Since the exact dynamic equations for mesoscales are not solvable analytically, approximations
had to be made at the outset to render the equations solvable analytically. The dynamical equa-
tions were considered in the small Froude and Rossby numbers regime, a physically acceptable
framework to treat baroclinic instabilities that were the primary focus of OM1. Shear instabilities
responsible for purely barotropic modes were not included in OM1 (nor in this paper) and their
addition is left to future work. The key new ingredient of this model vis a� vis a linear treatment
(Killworth, 1997) is the presence of non-linear interactions for which we employed a model (Can-
uto and Dubovikov, 1996, Canuto et al., 1999 and references therein) that had been previously
tested on a wide variety of flows. Under these conditions, in OM1 it was shown that the eddy field
equations reduce to a vertical eigenvalue problem for the Bernoulli function representing meso-
scales. Knowledge of the solutions allows us to construct the eddy fluxes in terms of the large
scale, resolved fields. The model results will be tested against a large set of data to assess their reli-
ability before being used in OGCMs.
2. Structure and organization of the paper

Since the key features of the mesoscale model were presented in detail in OM1, there is no
need to repeat them here. However, in z-coordinates new problems arise which are of both
mathematical and physical nature. To the first category belongs the fact that the transition
from isopycnal to z-coordinates is not simply a mathematical transformation since the density
field itself is a random variable, a subject that requires special handling and for that reason it is
discussed in Appendix A. The more physically interesting new feature is the appearance of a



V.M. Canuto, M.S. Dubovikov / Ocean Modelling 11 (2006) 123–166 127
‘‘residual buoyancy flux’’. The physical origin, interpretation, closure and properties thereof are
a major part of the main text because of their direct oceanic implications. The derivation of
many results is on average a rather laborious process and often times it has no direct physical
interpretation. For that reason, the emphasis in this paper has been on first presenting the
problem we plan to discuss, followed by the model results with mathematical details given
in the Appendices. The physical interpretation of the model results then follows together with
an assessment of the model results, a process that uses data from eddy-resolving codes, empir-
ical relations and direct measurements.

In Section 3 we discuss the mean buoyancy equation; in Section 4 we discuss the residual
buoyancy flux and offer several different viewpoints on its significance; in Section 5, we present
the model results and a variety of implications and assessments we have made of the model
results; in Sections 6 and 7, we present the model results for the Reynolds stresses in the mean
momentum equation; in Section 8, we present the model results for the Eliassen–Palm fluxes,
the PV (potential vorticity) and RV (relative vorticity) fluxes, derive a generalized Eliassen–Palm
theorem and discuss previous models; in Sections 9 and 10, we present a detailed derivation of the
model results. Finally, in Section 11 we present some conclusions.
3. Mean buoyancy equation

In OM1 (Canuto and Dubovikov, 2004) we presented a dynamical mesoscale model in isopyc-
nal coordinates (an overbar and a prime were used to denote average and fluctuating compo-
nents). In z-coordinates, we employ a double overbear and a double prime A, A00 to denote
average and fluctuating components of a given variable. For the mean flow we employ the nota-

tion U ¼ uþ wez while for the eddy field we use U00 = u00 + w00ez; $ = $H + ezoz, ez is the unit vec-
tor in the z-direction and ax = oa/ox. In the adiabatic limit, the equation for the mean of the
buoyancy field b ¼ �gðq� q0Þq�1

0 is
bt þU � rbþr � Fb ¼ 0 ð1aÞ

where the mesoscale buoyancy flux is defined as
Fb � U00b00 ¼ FH þ ezF V FH ¼ u00b00 F V ¼ w00b00 ð1bÞ

where FH and FV are the horizontal and vertical components. The following exact equation (Tre-
guier et al., 1997) can be derived from (1a):
bt þ ðuþ uþÞ � rHbþ ðwþ wþÞbz ¼ � oR
oz

ð1cÞ
where uM = (u+,w+) is the eddy-induced velocity defined as ðbz ¼ N 2Þ
uþ ¼ �ozðN�2FHÞ; wþðzÞ ¼ �rH �
Z z

�H
uþðz0Þdz0 ð1dÞ
while the residual flux R and the slope of the isopycnal surfaces L are defined as
R ¼ F V � FH � L L ¼ �N�2rHb ð1eÞ
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Thus, a mesoscale model must provide both uM = (u+,w+) and the residual flux R which we now
discuss in order. In the adiabatic approximation all fluxes across true isopycnals (which vary with
time) can be shown to vanish. The vanishing is due to the cancellation between the flux across
frozen isopycnals and the one due to the variation in time of the isopycnals themselves. This is
not the case for fluxes across mean isopycnals in z-coordinates (e.g., residual flux R) since, within
the eddy�s characteristic dynamic time scale, mean isopycnals can be considered frozen in time
(Dubovikov and Canuto, submitted).

From the boundary conditions w+(0) = 0, w+(�H) = 0, it follows that the vertically integrated
u+(z) must have zero horizontal divergence. While in principle a theory could be developed in
which such a flow is non-zero, it is not obvious how this would interact with lateral boundary con-
ditions on the vertical walls. Instead, in common with all other formulations of which we are ware
of, we take the simple solution
Z 0

�H
dzuþðzÞ ¼ 0 ð1fÞ
which trivially satisfies all requirements (see Killworth (1997) for a discussion on this point). Eq.
(1f) is also interpreted as a reflection of the fact that mesoscales are not supposed to exert a mean
stress on the ocean but only to distribute the external stresses that are applied to the surface. Since
previous models did not satisfy (1f), the problem was dealt with by adopting tapering schemes
(Danabasoglu and McWilliams, 1995; Large et al., 1997; Visbeck et al., 1997; Gerdes et al.,
1999; Killworth, 2001; McDougall and McIntosh, 2001; Ferrari and McWilliams, 2004). How-
ever, different schemes affect the outcome of climate studies differently since they modify the heat
exchange between ocean and atmosphere. The model results for uM = (u+,w+) and R(z) presented
below satisfy (1f) and the other boundary condition
Rð�H ; 0Þ ¼ 0 ð1gÞ
4. Diapycnal residual flux R

Since this term has thus far been taken to be zero while it is not, it is important to discuss its
physical meaning. Consider the following variables: eddy potential, eddy kinetic energy and mean

kinetic energy, EPE ¼ ð2N 2Þ�1b002; EKE ¼ 1=2U00U00; MKE ¼ 1=2U
2

; eddy energy TEE =
EKE + EPE, total potential energy TPE = gqz, mean potential energy MPE = TPE � EPE and
mean energy ME =MPE +MKE. Neglecting terms not directly related to the main discussion

and using the relations D=Dt ¼ o=ot þU � r, Dz/Dt = w and Db/Dt = 0 (adiabaticity), we obtain
D

Dt
EPE ¼ �Rþ � � � ¼ FH � L� F v þ � � � ; D

Dt
EKE ¼ F v þ � � � ¼ FH � Lþ Rþ � � � ð2aÞ
D

Dt
TEE ¼ FH � Lþ � � � ð2bÞ

D

Dt
TPEþ wb ¼ �R� FH � Lþ � � � ð2cÞ



V.M. Canuto, M.S. Dubovikov / Ocean Modelling 11 (2006) 123–166 129
D

Dt
MPEþ wb ¼ �FH � L; D

Dt
MKE ¼ wb ð2dÞ
Several considerations are in order. Eqs. (2d) and (2b) show that FH Æ L represents the rate of loss
of ME and the rate of gain of TEE. How is the TEE partitioned between EPE and EKE? The EPE
does not get the full FH Æ L but only part of it, specifically FH Æ L � Fv since Fv represents the flux
that goes from EPE to EKE, as Eqs. (2a) show. To be a source of EPE, FH Æ L � Fv must be po-
sitive which means that
R < 0 ð2eÞ

This has been confirmed by eddy-resolving codes (Böning and Budich, 1992; Gille and Davis,
1999; McDougall, 2004). There is another physical consideration that leads to (2e). Comparing
(2d) and (2b), one concludes that in an adiabatic regime (no sinks), TEE cannot decrease since
it is continuously fed by MPE. On the other hand, since the ratio EKE/EPE has been found to
be constant (Böning and Budich, 1992, Table 2; Wunsch, 1999), an increase of TEE implies an
increase of EPE. Thus, the rhs of the first of (2a) cannot be zero and (2e) follows. Alternatively,
in an adiabatic regime one cannot have a stationary state since the absence of sinks means that
the variable under consideration can only increase with time: indeed, the lhs of Eqs. (2) must
be viewed as the ‘‘growth rates’’ of the corresponding variables. As a corollary, the solution
DEPE/Dt = 0 and R = 0 is a mathematical rather than a physical solution.

Finally, consider the dynamic equation for the mean thickness (h = oq/oz) in isopycnal coordi-
nates (see OM1). With bu ¼ uþ u�, where u* is the bolus velocity, we have
ht þ bu � rh ¼ �hrbu ð2fÞ

If we compare (2f) with (1c) we notice that the ‘‘source of mean thickness’’ or the bulging of the
isopycnals represented by the rhs of (2f), is the physical analog of the rhs term in (1c), a physical
process represented in z-coordinates by a diapycnal flux.

In Fig. 1 we present the energy diagram borrowed from Böning and Budich (1992, Fig. 8) in
which the loss by MPE is called T2 while the gain by EKE is called T3.

Because of (2e), there is a considerable cancellation between FH Æ L > 0 and R < 0 with the result
that the transfer term T3 is smaller than T2. It is therefore useful to view the ratio T3/T2 as an
‘‘efficiency’’ or ‘‘rate of leakage’’ factor given by
n ¼ F v

FH � L ¼ 1� jRj
FH � L ð2gÞ
If both numerator and denominator are integrated over z, the results of Böning and Budich (1992,
Fig. 9) indicate that n � 1/5, a value that we discuss in Section 5. This indicates that the leakage
from EPE to EKE is about 20%.

Thus far, it has always been assumed that R = 0. What are implications of such a choice? It
implies that there is no source of EPE, as the first of equation (2a) shows, and that all the
MPE goes into EKE, an assumption not supported by detailed energy balance analyses (Böning
and Budich, 1992; Beckmann et al., 1994). In Section 3 we shall present the model results for R
and FH Æ L and numerical results for n.

A non-zero residual flux R has also implications concerning whether baroclinic instabilities of
the mean flow only extract energy from the mean flow, as the term FH Æ L in (2d) indicates, or
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Fig. 1. The energy flow among different components. MKE and MPE stand for mean kinetic and mean potential
energies; EPE and EKE stand for mean potential and eddy energies. The fluxes T�s between the different blocks follow
the notation of Böning and Budich (1992) and Böning and Budich (1992). In the subpolar gyre (46–60)�N–(25–60)�E,
the input is MPE (T4 is directed to the left while T1 is upward). In the sub-tropical gyre (10–30)�N–(25–60)�E, the input
is MKE (T4 is directed to the right while T1 is downward).
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whether they also give rise to mixing. Wunsch and Ferrari (2004, WF4) concluded that mesoscale
eddies cannot increase the TPE which they write, ‘‘is the requirement for vertical mixing pro-
cesses’’. Consider their Eq. (28) which we rewrite as
gqw ¼ �GðmeanÞ � Gðmesoscale eddiesÞ � GðturbÞ ð3aÞ

The term in question is the second one which in our notation is the rhs of Eq. (2c)
Gðmesoscale eddiesÞ ¼ FH � Lþ R ð3bÞ

Since FH Æ L is positive, its contribution to (3a) is negative, a sink that represents extraction of en-
ergy, a process ultimately responsible for the ‘‘flattening of the isopycnal surfaces’’, a decrease of
baroclinic energy and ultimately, a lowering of the center of mass. Such a term produces no mix-
ing. However, in (3b) there is second term not accounted for by WF4. Since R is negative, its con-
tribution to (3a) is positive, it raises the center of mass and leads to vertical mixing. In what follows
we present the model results for uM = (u+,w+) and R.
5. Model results

Since the derivation of the results entails a certain level complexity and since the original model
was already discussed in OM1, we deem it useful to first present the results with a description and
interpretation of their physical content. The detailed derivation is then presented in Sections 9, 10
and in the Appendices.

5.1. Eddy-induced velocity

The eddy-induced velocity defined in Eq. (1d) was derived to have the following form in terms
of the mean fields:
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uþ ¼ �kmw

w ¼ ozLþ wðnewÞ

wðnewÞ ¼ �hozLi � ð1þ r�1
t Þf �1r�2

d ez � u� hui
� �

ð4aÞ
The first term in w is of the GM-type while the second term is new. The mesoscale diffusivity km(z)
was derived to have the form
km ¼ 1:7s1=2rdKðzÞ1=2 ð4bÞ

where the average h� � �i is defined as
hAi �
Z 0

�H
AðzÞK1=2ðzÞdz

Z 0

�H
K1=2ðzÞdz

� ��1

ð4cÞ
The notation is as follows. The vector L is defined in Eq. (1e), f is the Coriolis parameter, rd the
Rossby radius, rt is the turbulent Prandtl number and s is a filling factor. The last two variables
are discussed below.

Several considerations are in order. First, in OM1 it was shown that in computing the rate of
production of the total eddy energy given by the integral of FH Æ L, see Eqs. (2b) and (6c) below,
the first two terms in u+(z) yield a positive contribution implying a drain of energy from the mean
fields while the last two terms yield a negative contribution indicating a back-scatter of some of
the energy to the mean field. The latter can be viewed as reducing the efficiency of the ‘‘flattening
of the isopycnals’’ produced by the first two terms. Second, we recall that using an eddy-resolving
ocean code, Bryan et al. (1999) concluded that the GM model was not sufficient to represent the
data and that ‘‘additional terms, not related to the gradient of thickness’’, were needed. To inter-
pret w (new) in this context, we rewrite it in the alternative form
wðnewÞ ¼ Ae� ðud � uÞ � f �1b ð4dÞ

where
A ¼ ð1þ r�1
t Þðfr2dÞ

�1 ð4eÞ

ud ¼ hui þ ð1þ rtÞ�1
cR þ A�1ez � hozLi; cR ¼ rtr2de� b ð4fÞ
whose physical interpretation is as follows. The term (4d) has a dynamical meaning since it de-
pends on the difference between the mean velocity u and ud which, as we show below, is the mes-
oscales ‘‘drift velocity’’ that characterizes the eddy motion as a whole since ‘‘eddies move through
the background water at speeds and direction inconsistent with background flow’’ (Richardson,
1993). The drift velocity is the same throughout the entire vertical eddy�s structure and is z-inde-
pendent. Finally, cR is the velocity of barotropic Rossby waves. It follows from (4a, d–f) that a
mesoscale model that uses only the first, down-gradient term (e.g., a GM-type model) is valid only
if
uðzÞ ¼ ud; b ¼ 0 ð4gÞ

Eq. (4g) requires that at all points in the z-column the velocity of the mean flow be equal to the
drift velocity and that there are no b effects. While the latter may be an acceptable approximation,
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the first requirement in (4g) is clearly impossible to satisfy since ud is a barotropic, z-independent
variable while the mean velocity uðzÞ is z-dependent. Though the first of (4g) may be satisfied at
some point, it cannot be true in general. Two more physical considerations are in order concern-
ing the origin and interpretation of ud. In solving the mesoscale eigenvalue problem discussed in
OM1, the space and time variables (r, t) were transformed to (k,x) variables. The solution of the
eigenvalue problem led to the relation
x ¼ k � ud ð4hÞ
where ud is given by (4f). To interpret (4h), consider the general Doppler transformation
x = x0 + k Æ V where V represents the relative velocity between two frames. Choosing the initial
frame to be the system at rest of the eddy�s center and assuming the eddy to be axisymmetric, we
have x0 = 0. Comparing the resulting Doppler relation with (4h), we obtain ud = V, that is, ud is
the velocity of the eddy as a whole which can be called drift velocity. Actually, as shown in OM1,
the first two relations in Eq. (4a) with (4d–f) were the original solution of the eigenvalue problem
which was then transformed to acquire the form of w (new) presented in (4a).
5.2. Boundary conditions

Since the mesoscale diffusivity is proportional to K1/2(z), which is the weighing factor in the def-
inition (4c), the eddy-induced velocity u+(z) automatically satisfies the relation
Z 0

�H
uþðzÞdz ¼ 0 wþð�H ; 0Þ ¼ 0 ð4iÞ
In carrying out the integration in (4i), it can be easily seen that the first two terms in (4a) cancel
each out as do the last two terms. This means that in (4a) and/or (4d) the h� � �i terms (which are
z-independent and thus ‘‘barotropic’’) are indispensable to satisfy (4i).
5.3. Comparison with the GM model

Since the GM model was primarily intended to account for the energy sink of MPE, it employs
only the first term in the second relation (4a), that is
uþðGMÞ ¼ �ozkmL ð4jÞ
Because if its heuristic nature, within the GM model the mesoscale diffusivity may in principle be
inside or outside the derivative. GM chose the form (4j) so as to satisfy the first of (4i) by imposing
that
kmð�H ; 0Þ ¼ 0 ð4kÞ

However, (4k) is not confirmed by the present model that yields (4b) which has its maximum value
at the surface where K(z) is the largest. Recent numerical simulations studies discussed below
(Ferreira and Marshall, submitted, Fig. 13; Olbers and Visbeck, in press, Fig. 6) do not confirm
(4k) but (4b).
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5.4. Non-locality

Muller and Garrett (2002) have pointed out that the effect of mesoscales may not be entirely
representable as a local effect with eddy fluxes proportional to local mean gradients. As Eqs.
(4a) show, only the first term is proportional to the local gradient while w(new) contains the
h� � �i terms that ‘‘sample’’ the entire water column which represents a non-local effect. Thus,
the present model can be viewed as non-local in the vertical.

5.5. Scaling laws

We use the geostrophic approximation to estimate the various terms in the new expression for
the eddy-induced velocity, Eqs. (4a). It is clear that the first and the second terms are of the same
order and so are the third and the fourth. We further derive that j L j � Oðf u=HN 2Þ and w � Ro/rd
where Ro ¼ u=frd and rd = NH/f are the Rossby number and deformation radius. The ratio of the
first to the third term is (frd/NH)2 � O(1) and thus the new terms in (4a) are of the same order as
the first term.

5.6. Mesoscale kinetic energy

The model yields the following result:
KðzÞ ¼ K tCðzÞ ð5aÞ
with Kt is the surface eddy kinetic energy (the subscript t stands for top) to be discussed below.
The dimensionless function C(z) is given by
CðzÞ ¼ ðjB1ðzÞj2þ ja0j2Þð1þ ja0j2Þ�1 ð5bÞ
where B1(z) is the first baroclinic mode solution of the eigenvalue problem
o

oz
N�2 oB1

oz

� �
þ ðrdf Þ�2B1ðzÞ ¼ 0 ð5cÞ
with the boundary conditions ozB1 = 0, at z = �H, 0 and B1(0) = 1. The physical interpretation of
(5b) is as follows. B1 represents the baroclinic contribution while the a0 terms represent the baro-
tropic one. The partitioning of the eddy kinetic energy between the two modes has been studied
by Wunsch (1997) who, among others things, concluded that the first baroclinic mode B1(z) dom-
inates the surface kinetic energy. In the numerical estimates presented below we use N 2ðzÞ ¼
N 2

0e
�2z;N 0 ¼ 7� 10�3s�1 (z in km) first suggested by Garrett and Munk (1972) and used recently

by Zang and Wunsch (2001, their Appendix 1). For maps of N(z), see Emery et al. (1984).
The barotropic contribution to K(z) is represented by the variable a0 the form of which is

given by
ja0j2ð1þ ja0j2Þ�1K t ¼
1

2
ð1þ 2c1ÞI21 þ I1 � I2 þ traceðKij þ XijÞ ð5dÞ
where the vectors I1,2 and the tensors K and X are given by
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I1 ¼ c2w� I2 ¼ �c2C�1=2w w� � w signB1 ð5eÞ

Kij ¼ c3PiPjC
�1=2 signB1 Xij ¼ c4PiPj P ¼ fw� f ozLþ b ð5fÞ
The constants c�s and the overbar are defined as
c1 ¼ C1=2ðzÞ
�1

signB1; c2 ¼ 1:7s1=2r�1=2
t fr2d; c3 ¼ r4

t ð1þ rtÞ�2r4d; c4 ¼ �c1c3

X � H�1

Z 0

�H
X ðzÞdz ð5gÞ
Using Eqs. (5), we have compared the model predicted profile K(z)/Kt with the measurements for
the vertical section along 55�W in the interval 15�N–45�N (Richardson, 1983a). The maximum of
the eddy kinetic energy occurs at 38�N (Gulf Stream). To compute rd and w, we needed the pro-
files of uðzÞ; NðzÞ andrh which however are not given in Richardson (1983a). For this reason, we
obtained them from (Richardson, 1983b; Owens, 1984; Antonov et al., 1998; Boyer et al., 1998).
The behavior predicted by the model presented in Fig. 2 is in good agreement with the measured
profile by Richardson (1983a). Fig. 2 is also in agreement with the numerical simulation of Böning
and Budich (1992), their Fig. 6a, b and with Fig. 14 of Wunsch (1997). An additional prediction of
the present model is that the profile of K(z)/KtN(z) has a minimum at z � �1 km, in agreement
with measured values (Schmitz, 1994).

5.7. Surface eddy kinetic energy Kt

For the surface value of the eddy kinetic energy, the model yields the following result (see
OM1):
K t ¼ 3grdu�1
3 U ð6aÞ
where (p is the mean pressure):
U ¼ �1:7s1=2frdq
�1
0

Z 0

�H
dzC1=2ðzÞw � rHp; u3 ¼

Z 0

�H
dz j B1ðzÞ j3 ð6bÞ
The parameter g will be discussed below. While these expressions are fully calculable once the
mesoscale model is used with an ocean OGCM to provide the mean fields, like the mean pressure
in (6b), it is possible to present a more physical expression by recalling that the rate of production
of total eddy energy is given by Eq. (2b)
PT ðm3 s�3Þ ¼
Z 0

�H
dzFH � L ¼ q�1

0

Z 0

�H
dzuþ � rHp ð6cÞ
In the last step, we used the first of (1d), integrated by parts and used the hydrostatic equilibrium
equation. Using the expression for the eddy-induced velocity, one can relate (6c) to the function
U. The result is
PT ¼ ð3grdu�1
3 Þ1=2U3=2 ð6dÞ
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Fig. 2. The predicted profile of the eddy kinetic energy K in units of its surface value, Kt. The data are from Richardson
(1983a).
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and thus from (6a) we have
K t ¼ ð3grdu�1
3 Þ2=3P 2=3

T ð6eÞ
which is physically more transparent since it relates the eddy surface kinetic energy to the
power available to the mesoscale field. Using computed values rd = 25 km, and u3 = 325 m we
obtain
K t ¼ 37:5ðgP �
TÞ

2=3 cm2s�2 P �
T ¼ PT=ð10�6 m3s�3Þ ð6fÞ
In Fig. 6 of Böning and Budich (1992) the value of Kt for the subpolar region is 35 cm2 s�2. We
should recall that the nominal value of 25 km for the Rossby radius used in this paper is typical of
latitudes about 40�N (Emery et al., 1984, Fig. 5a,b). For the meridional dependence (at 30�W) of
the surface eddy kinetic energy, see Fig. 1 of Beckmann et al. (1994). Data on the eddy kinetic
energy from Topex–Poseidon are discussed by Stammer and Dietrich (1999).
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5.8. Ocean energy and dissipation data

Given the still incomplete understanding of the energy budget in the ocean (Wunsch and Fer-
rari, 2004; Huang, 2004), it is difficult to make unequivocal comparisons with ocean energy data.
For example, using the GM model FH = kmN

2L, Eq. (6c) gives
PTðGMÞ ¼
Z

kmN 2L2 dz ¼
Z

kmb
�1

z rHb
� �2

dz ð6gÞ
which is the expression employed by previous authors (Gent et al., 1995; Treguier et al., 1997; Fer-
rari and McWilliams, 2004) who arrived at (6g) in a way different from ours. In fact, these authors
did not considered D(TEE)/Dt as we do, but rather the total potential energy TPE given by Eq.
(2c). However, since they assumed R = 0, the rhs of (2c) coincides with the rhs of Eq. (2b) with an
obvious sign difference. Treguier et al. (1997) compared (6g) with FRAM data while Ferrari and
McWilliams (2004) compared (6g) with the �1 TW of energy input by the wind into the ocean
(Wunsch, 1998). The present model predicts a well defined value for PT once Eq. (6c) is computed.
For the time being, we use f = 10�4 s�1, u+ � 10�3 m s�1, in which case Eq. (6c) gives (A is the
ocean�s surface area)
qAPT � 1

3
TW ð6hÞ
to be compared with �1 TW which represents the work by the wind (Wunsch, 1998).
5.9. Mesoscale diffusivity: Time and length scales

Consider (4b). Since the eddy kinetic energy depends on z and since the Rossby radius depends
on the geographic location, the predicted mesoscale diffusivity is neither horizontally nor verti-
cally uniform, in agreement with what several authors have concluded (e.g., Stammer, 1998). Fur-
thermore, if one writes the mesoscale diffusivity as
km � l2eddyt
�1
eddy ð6iÞ
where leddy is an eddy�s mixing length and teddy is an internal time scale, we conclude that
leddy � rd; teddy � rdK�1=2 ð6jÞ

In the past, the nature of both leddy and teddy was discussed by several authors who suggested dif-
ferent forms. Stone (1972) suggested the first of (6j) while Held and Larichev (1996) suggested the
larger Rhines scale
leddy � ðU=bÞ1=2 ð6kÞ

where U is a characteristic mean flow velocity and b = of/oy. Using the Topex–Poseidon data,
Stammer (1997, 1998) concluded that leddy is given by the first of (6j) rather than (6k). Using typ-
ical values of Kt � (0.5�1) · 10�2 m2 s�2 (Stammer, 1998), and rd� 30 km, Eq. (4b) gives
kmðsurfaceÞ � 3 s1=2103 m2 s�1 ð6lÞ
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Since the filling factor s < 1 (see below), Eq. (6l) is close to the heuristic values used in the GM
model (Gent and McWilliams, 1990; Gent et al., 1995). Karsten and Marshall (2002) used the
models of Holloway (1986) and Keffer and Holloway (2002) and the TOPEX Poseidon data
for the sea surface height. Their result, shown in their Fig. 2, is
103 6 kmðsurfaceÞ < 3� 103 m2 s�1 ð6mÞ
in agreement with (6l). It may be of physical interest to relate the mesoscale diffusivity to the
power PT. Using (6e) we obtain
kmðsurfaceÞ ¼ Cr4=3d u�1=3
3 P 1=3

T ¼ 103CP �1=3
T m2 s�1 ð6nÞ
where C = 2.45s1/2g1/3. In the second relation we have used typical value of u3�H = 1 km,
rd = 30 km as well as the dimensionless variable P �

T defined in (6f). The last relation is in agree-
ment with (6m).

5.10. Mesoscale diffusivity: z-dependence

The z-dependence of the mesoscale diffusivity has been the subject of considerable interest in
the past. Since our model (4b) predicts a diffusivity proportional to K1/2(z), in the present model
the predicted behavior of km(z) has a form similar to that depicted in Fig. 2, that is, km(z) is the
largest at the surface, followed by a rapid decrease, ultimately reaching a value constant with
depth. This behavior is in accordance with the heuristic expressions suggested by Visbeck et al.
(1997) and Karsten and Marshall (2002). Using an eddy-resolving code, Bryan et al. (1999) found
that an overall consistent ocean model was obtained with
kmðzÞ ¼ 0:13r2dfRi
�1=2 ð6oÞ
Since Ri is the smallest near the surface and then increases, (6o) predicts a behavior similar to that
of our model. More recently, Ferreira and Marshall (submitted, Fig. 13) have numerically studied
the problem and their result for km(z) is very similar to ours. Olbers and Visbeck (in press, Fig. 6)
have also concluded that they ‘‘require’’ a mesoscale diffusivity of the form obtained in this model.

5.11. Eddy potential energy EPE

The eddy potential energy EPE is given by (m2s�2):
EPE � 1

2
N 2z02 ¼ rt

frd
N

� �2

K t

oB1

oz

� �2

ð7aÞ
where the z-dependence is due to the eigenfunction B1(z), Eq. (5c). The EPE given by Eq. (7a) is
plotted in Fig. 3a in units of n�1(1 � n)Kt where the Prandtl number rt is expressed in terms of n in
Eq. (8d) below. As Böning and Budich (1992) have noticed ‘‘while the EKE (Fig. 1) decreases with
increasing depth through the main thermocline, maximum values of EPE are fund at the subsur-
face’’. The profile of EPE predicted by this model is in agreement with the results of Böning and
Budich (1992), their Fig. 6. In particular, using n = 1/5 (see 8f), in Fig. 3b we plot EPE/Kt only to
a depth of 1400 m to facilitate the comparison with Böning and Budich�s results (their Fig. 6)
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where the maximum values of EPE/Kt vary between 2.7 and 3.5. Our maximum value is close to
those values. However, the most important feature is that the predicted profile of EPE is quite
similar to the one obtained with a high resolution OGCM.

5.12. EPE

Integrating Eq. (7a) over z and expressing the result in terms of PT, we obtain
Z 0

�H
dzEPEðzÞ ¼ n�1ð1� nÞB�ðgP �

TÞ
2=3

; B� ¼ 3:75� 10�3

Z 0

�H
dzB2

1ðzÞ ð7bÞ
We computed B* = 1.81 m. Multiplying (7b) by qA where A = 3.6 · 1014 m2 is the ocean�s surface
area, we obtain (1ExJ = 1018 J):
EPE ¼ 0:65n�1ð1� nÞðgP �
TÞ

2=3 ¼ 2:6ðgP �
TÞ

2=3ExJ ð7cÞ

which relates EPE to the rate of production of TEE and to n. In the last step we used n = 1/5, see
Eq. (8f). Since g > 1 and P �

T ¼ 3 (see below), a value of g = 5 would yield 16ExJ, in agreement with
the values cited by WF4.

5.13. Residual buoyancy flux

For the residual diapycnal buoyancy flux R defined in Eq. (1e), the model gives the following
results:
RðzÞ ¼ �krmðzÞN 2; krmðzÞ ¼ Cr
mðzÞ

em
N 2

ð7dÞ
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where
Cr
mðzÞ ¼ ð1þ r�1

t Þ�1 rdf
N

� �2

u3MðzÞ ð7eÞ

em ¼ PTu
�1
3 ð7fÞ

MðzÞ ¼ oB1

oz

� �2 Z 0

�H
B2
1ðzÞdz

� ��1

ð7gÞ
The form of MðzÞ assures that the boundary condition (1g) is satisfied since as z approaches �H
and 0, B1(z) tends to a constant value. Here, krmðzÞ is the diapycnal residual diffusivity, Cr

mðzÞ is
a depth-dependent mixing efficiency and em is the mesoscale dissipation. Several considerations
are in order. The fact that the model yields a negative R is quite reassuring since such a behav-
ior is indeed expected from general physical arguments about the physical role of R, as dis-
cussed in Section 4. The vertical diffusivity is directly proportional to the power PT which
serves to link the strength of the residual flux to the power available to the mesoscale field
as drawn from the MPE. Finally, in Eq. (1c) the two types of mesoscale terms are of equal
importance if
krm � L2km ð7hÞ

which represents an interesting relation between the two mesoscale diffusivities. In Fig. 4 we plot
R(z) normalized to ð1� nÞP �

T. The most important implication is that the bulk of the transfer
from MPE to EPE is predicted to occur in the first 500 m, in accordance with previous studies
(Gill et al., 1974; Böning and Budich, 1992; Beckmann et al., 1994).

5.14. Residual vertical diffusivity krm

This diffusivity krm, Eq. (7d), is plotted in Fig. 5 normalized to ð1� nÞP �
T. As expected, it van-

ished at the top and bottom but it reaches a value of almost 1 cm2s�1 at a depth of about 1 km.

5.15. Residual mesoscale mixing efficiency

This variable defined in Eq. (7e) is plotted in Fig. 6a. Contrary to the Osborn–Cox mixing effi-
ciency for the thermocline which is usually taken to be a constant, the one corresponding to the
mesoscales residual flux depends on depth.

5.16. Vertical flux

Eq. (2a) for EKE shows that the source of eddy kinetic energy is the vertical flux F v ¼ w00b00.
Using the first of (1d), together with (1e) and (7d) and Fv(�H, 0) = 0, we derive
F v ¼ w00b00 ¼ kvmN
2 > 0 kvmðzÞ ¼ �krmðzÞ � L �

Z z

�H
uþðz0Þdz0 ð8aÞ
where kvm is the vertical diffusivity.
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5.17. Diapycnal diffusivity induced by mesoscales

The two diffusivities krm and kvm combine in a particularly interesting way since the rhs of (2b)
can be written as
FH � L ¼ F v � R ¼ kdmN
2 ð8bÞ
where the mesoscale-induced diapycnal diffusivity is given by
kdm ¼ kvm þ krm ¼ �L �
Z z

�H
uþðz0Þdz0 ð8cÞ
which is entirely expressed in terms of the eddy-induced velocity.

5.18. Efficiency n

The efficiency n is defined in Eq. (2g). Integrating over z both numerator and denominator and
using Eqs. (7d–g), (6c) and (5c), we obtain
n ¼ ð1þ rtÞ�1 ð8dÞ

which is used to express the turbulent Prandtl number rt in terms of n which we determine next.



Fig. 5. Profile of the residual vertical diffusivity defined in Eq. (7d) normalized to ð1� nÞP �
T. As one can observe, values

up to 1 cm2 s�1 can be obtained.
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5.19. Eddy kinetic and potential energy

Using Eqs. (5a) and (5b) with only the baroclinic part, as well as (7a), we obtain that the ratio of
the z-integrated EKE and EPE is given by
EKE

EPE
¼ nð1� nÞ�1 ð8eÞ
which can be used to determine the value of n once the ratio on the lhs is known. Wunsch (1999)
has recently studied this problem and his results are presented in his Fig. 2a. Böning and Budich
(1992) carried out two simulations with coarse (1/3� · 0.4�) and fine (1/6� · 0.2�) resolutions. In
the latter case, the ratio (8e) was ‘‘strikingly stable’’ around 1/4 (their Table 2), which implies:
n ffi 1=5 ð8fÞ

This confirms our first result discussed after (2g). The implications of (8f) have already been dis-
cussed after Eq. (2g). All previous analyses assumed n = 1 which corresponds to a complete trans-
fer of MPE to EKE.

5.20. Filling factor

In Eq. (4b), the variable ‘‘s’’ represents the fraction of the flow�s area occupied by the meso-
scales, a filling factor. For example, in Denmark Strait, the observed eddies have a diameter of
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Fig. 6. (a) Profile of the mesoscale-induced mixing efficiency defined in Eq. (7e). Contrary to the Osborn–Cox mixing
efficiency in the thermoclene which is constant, in this case it is z-dependent. (b) From Eq. (9d) the term N�2Rz

corresponds to an additional. mesoscale-induced diapycnal velocity to be added to the diabatic velocity in the Munk–
Wunsch model for the MOC. See Fig. 7a.
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about 30 km (the deformation radius is about 10 km) and a separation between eddy centers of
about 70 km (Cooper, 1995; Bruce, 1995). Thus, s � 0.15. Theoretically, s can be obtained using
the CD turbulence model to the whole spectra of eddies. However, at the present stage of the
mesoscale modeling, we apply the turbulence model only in the vicinity of the maxima of meso-
scale spectra. In this approximation, s cannot be computed.

5.21. Diabatic and adiabatic processes: stirring and mixing

In OM1 it was shown that the parameter g entering (6a) is defined as
g ¼ eg�1 � 1; eg ¼ ed=ep ð8gÞ

where eg represents the ratio of the rate of the eddy energy dissipation (by small scales) ed to the
eddy potential energy flux ep. It is important to stress that if the mesoscale model were treated
with an adiabatic approximation at all scales, there would be no dissipation ed which means
g !1 corresponding to an unphysical piling-up of EKE, see Eq. (6a). The problem of the ‘‘ulti-
mate fate of the eddy potential energy’’ (Tandon and Garrett, 1996) cannot be resolved within a
purely adiabatic mesoscale model since to include dissipative processes, one must include diabatic
processes. Though this topic was discussed in OM1, we recall here some important aspects of the
EPE/EKE cycle that drains eddy potential energy from mean potential energy at the large scales
and transfers it to smaller scales via an ordinary cascade process (see Fig. 1 of OM1). EPE flows
from large to small scales until the turbulence dynamical time scale becomes equal to the Coriolis
time scale and allows the release of EPE. At that scale, both the Rossby and the Richardson num-
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bers become of order unity thus enabling shear fluctuations to generate vertical turbulence. At
those scales, a fraction of the EPE gets dissipated (ed) while the rest goes into generating EKE
which flows upscale to be returned partly to the EPE and partly to the men velocity field. Extant
models only treat the stirring phase of the entire mesoscale energy processes (Muller and Garrett,
2002). In the present model, this is no longer so since we have
km � g1=2 � e�1=2
d ðep � edÞ1=2 ð8hÞ
Thus, mixing by the small dissipative scales (diabatic) affect the mesoscale diffusivity that repre-
sents stirring (adiabatic), as indeed expected when kinetic energy flows from small to large scales
(Garrett, 2001). The model yields the following expression for g
g ¼ 102Cf �1

Z 0

�H
jB3

1ðzÞjdz
Z 0

�H
NðzÞ jB3

1ðzÞjdz
� ��1

¼ 1:82C ð8iÞ
where C is a universal constant of order unity. In the last step in (8i) we have used the N(z) de-
scribed after Eq. (6e).

5.22. Temporal–residual mean approach (McDougall, 2001)

In this approach, a distinction is made between the averaging density at a given height and aver-
aging the height of a given density surface, in which case the buoyancy is denoted by eb the dy-
namic equation of which entails the stream function WTRM (McDougall, 2001, Eq. (7)) which
in our model is given by
N 2WTRM ¼ FH þ rtðfrdN�1Þ2K t
oB1

oz

� �2

ozu ð8jÞ
Clearly we have WTRM(�H, 0) = 0.

5.23. The advection–diffusion problem

Munk (1966) and Munk and Wunsch (1988) have proposed the well-known advection–diffusion
model for the meridional overturning circulation. They employed a diapycnal diffusivity (uniform
or not) that was assumed to be caused by diabatic processes represented by a flux Fd. If we include
the diabatic contribution, the mean buoyancy equation (1c) becomes
bt þ ðuþ uþÞ � rHbþ ðwþ wþÞN 2 ¼ � oR
oz

� oF d

oz
ð9aÞ
If, as customary, the diabatic flux is represented in the form
F d ¼ �kdN 2 ð9bÞ

a value of the diabatic diffusivity kd of 1 cm2s�1 was required by Munk and Wunsch to explain
their model of the MOC. Since the measured value of the so-called ‘‘pelagic’’ diapycnal diffusivity
is about ten times smaller, the problem has been amply discussed in the literature. Here, we want
to discuss the mesoscale contribution to the problem. Eq. (9a) can be rewritten as
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bt þ u � rHbþ wN 2 ¼ w�N 2 ð9cÞ

where w* is the velocity across mean isopycnals
�w� ¼ wþ � uþ � Lþ N�2 oR
oz|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mesoscale adiabatic

þ N�2 oF d

oz|fflfflfflffl{zfflfflfflffl}
MW-diabatic

ð9dÞ
The last term corresponds to the MW-diabatic process while the first three terms correspond to
the adiabatic, mesoscale-induced processes. In Fig. 6b we plot the third term in (9d).

Using an eddy-resolving code, Radko and Marshall (2004a,b, cited as RM) have studied w*.
Lack of a mesoscale model forced them to employ a heuristic expression for w* = e$2h whereas
the present model gives an expression for all of them. The last term in (9d) is modeled in Canuto
et al. (2001, 2002, 2004). RM concluded that ‘‘largest part of the diapycnal flux is due to the action
of eddies rather than to small–scale vertical mixing’’. The results of our model are as follows.
Using the first of (7d) and (9b), Eq. (9d) can also be written as ðwr ¼ okrm=oz;w

d ¼ okd=ozÞ

�w� ¼ wþ � uþ � L|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Mesoscale adiabatic

þ wr þ krmN
�2N 2

z|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
mesoscale-adiabatic due to R

þwd þ kdN�2N 2
z|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

MW-diabatic

ð9eÞ
While the first two terms on the rhs of (9e) can be evaluated once the mesoscale model is solved,
the third and fourth terms can be estimated and so are the last two terms using a turbulence model
(Canuto et al., 2001, 2002, 2004). The third and fourth terms are shown in Fig. 7a while the last
two terms are shown in Fig. 7b.

At z = 1 km one can see that the mesoscale adiabatic terms are some 10 times larger than the
diabatic mixing terms, in accordance with the conclusions of Radko and Marshall (2004a,b).
Since the ‘‘flattening of isopycnals’’ is mainly due to the vertical advection process (Treguier
et al., 1997; Treguier, 1999), the presence of the third and fourth terms in (9e) may significantly
affect the role of mesoscales. From Fig. 7a (in Munk�s paper of, 1966, the upward vertical motion
was estimated to be 1.43 · 10�7 m s�1) we further observe that in the first 500 m, the mesoscale
contribution corresponds to down-welling while beneath 500 m it contributes to up-welling. The
‘‘cancellation’’ in the first 500 m may help reduce the ‘‘excessive up-welling in the Pacific’’ found
in z-coordinate OGCMs (without the R term) discussed by Hirst and McDougall (1998, HMD,
Fig. 3) which is not supported by observations (cited by HMD) and which the GM model does
not help resolve. Since an analysis of the same region with an isopycnal OGCM does not exhibit
such excessive upwelling (Sun and Bleck, 2001, Fig. 5b), it is conceivable that the missing R term
in z-OGCMs may be the cause of the difference. The ‘‘cancellation’’ may weaken the upwelling in
the upper parts of the water column and yield results more in line with both measurements and
isopycnal OGCMs.

Abyssal circulation. In the classical Stommel–Arons model (for a detailed discussion, see Ped-
losky, 1998, Chapter 7), the dynamics of the abyssal waters (>1 km) is set in motion by a diapyc-
nal velocity w1 at the base of the thermocline. Its value is usually taken to be
w1 ¼ kd=D ð9fÞ

where D is the scale height of the heat flux. While in the original Stommel–Arons theory w1 was
contributed by diabatic processes only, and as such, it is just a simplified form of the last term in
(9e), the presence of mesoscales means that its form is actually given by
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Fig. 7. (a) The third and fourth terms in Eq. (9e) as well as their sum in units of 10�7 m s�1. The normalization is
ð1� nÞP �

T. We recall that the original ‘‘upward vertical velocity’’ in Munk (1966) was 1.43 · 10�7 m s�1. We must also
recall that the numerical values are contingent upon the use of the stratification law discussed after Eq. (5c). (b) The
fifth and sixth terms in Eq. (9e) as well as their sum in units of 10�7 m s�1 as from the GISS mixing model (Canuto
et al., 2001, 2002). As one can observe, at the base of the thermocline �1 km depth, the (diabatic) diapycnal velocity
is much smaller than the one induced by the mesoscales exhibited in Fig. 7a (see however the last remark in the caption
of Fig. 7a).

V.M. Canuto, M.S. Dubovikov / Ocean Modelling 11 (2006) 123–166 145
w1 ¼ w� ð9gÞ
As discussed by Pedlosky (1998, Chapter 7), to obtain a flux of about 20 Sv from the abyss to the
thermocline, a value w1 = 0.7 · 10�7 m s�1 is required. Without the contribution of mesoscales,
diabatic processes characterized by a global 0.1 cm2s�1 diffusivity and with a D = 1 km, fall short
of what is required. On the other hand, Fig. 7a shows that the addition of mesoscales would sig-
nificantly help in fulfilling the required value of w1.
5.24. Vertical diffusivity vs. wind stresses

The well-known relation OV � k2=3d between the strength of the meridional overturning (OV)
and the diapycnal diffusivity (Bryan, 1987), has recently been generalized by Gnanadesikan
(1999) to include the effect of wind stresses. In a recent study, Klinger et al. (2003) conclude that
‘‘the globally averaged vertical diffusivity may need to be on the low side of the observational esti-
mates (0.1 cm2s�1) for the OV to be dominated by southern winds’’, as suggested by Toggweiler and
Samuels (1998). Since mesoscales contribute an additional diapycnal diffusivity with a larger
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patchiness than the ubiquitous breaking of internal gravity waves responsible for 0.1 cm2s�1, it
would be interesting to revisit Klinger et al.�s conclusion in the presence of mesoscales.
6. Mean momentum equations: Reynolds stresses

6.1. Eulerian mean (EM) formalism

Neglecting diapycnal terms due to diabatic process which are modeled elsewhere (Canuto et al.,
2001, 2002, 2004), the dynamic equations for the two-dimensional mean velocity field in the EM
formalism are given by (Gent and McWilliams, 1996)
Dtuþ f ez � u ¼ �rHp �r � Fm ð10aÞ

where q0 = 1, Dt ¼ ot þU � r is the advective derivative and U ¼ uþ wez. Mesoscales contribute
the term $ Æ Fm given by
r � Fm � U00 � ru00 ¼ r �U00u00 ¼ r � R ð10bÞ

where R are the Reynolds stresses
R ¼ U00u00 ¼ RH þ R? ¼ u00u00 þ ezw00u00 ð10cÞ

It is important to stress that the vertical velocity w00 in (10c) does not include the diapycnal vertical
velocity corresponding to diabatic processes leading to dissipation. Eq. (10b) can alternatively be
written as
r � R � u00 � rHu00 þ w00ozu00 ð10dÞ

which has the following advantages. Use of the identity
u00 � rHu00 ¼ ez � Ff þrHK ð10eÞ

helps exhibit the mesoscale kinetic energy and the flux of the relative vorticity f00
K ¼ 1=2u00u00 Ff ¼ f00u00 f00 ¼ rH � u00 � ez ð10fÞ

Irrespectively of any mesoscale modeling, Eq. (10e) shows that mesoscale models ought to exhibit
the horizontal gradients of K which data show to be large (Wyrtki et al., 1976, Fig. 4; Schmitz,
1976; Wunsch, 1981). Traditionally, the most widely used model in the mean momentum has been
a down-gradient mixing of momentum (Rosati and Miyakoda, 1988; Griffies and Hallberg, 2000)
which is not a model for mesoscales but a devise to assure numerical stability.
6.2. Transformed Eulerian mean (TEM)

In this case, the mean momentum equations acquire the form (Andrews et al., 1987; Gent and
McWilliams, 1996; Lee and Leach, 1996; Greatbatch, 2001)
ut þ u# � ruþ f ez � u# ¼ �rHp þr � E ð10gÞ
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where the 3D velocity field u# is called the residual mean circulation
u# � Uþ uM ð10hÞ

and uM is the eddy-induced velocity defined earlier in Eq. (1d). The second term on the rhs of (10g)
is the divergence of the Eliassen–Palm fluxes
r � E ¼ f ez � uM þr � ð�Rþ uMuÞ ð10iÞ

Below we present the model results for the Reynolds stresses.
7. Mean momentum equations: Model results

7.1. Eulerian mean formalism

The model result for the Reynolds stresses defined in Eq. (10c) is
RH ¼ u00u00 ¼ KdH þ s; R? ¼ ezS ð11aÞ

where dH is the 2D Kroneker tensor in a horizontal plane and s is a barotropic, traceless tensor
given by
s ¼ T� 1

2
dHTraceðTÞ; T ¼ 1

2
ð1þ 2c1ÞI1I1 þ

1

2
ðI1I2 þ I2I1Þ þ KþX ð11b;cÞ
where I1,2, Ki,j and Xij are given by Eqs. (5e–g). The vector S in (11a) is given by
S ¼ �
Z z

�H
½ð1þ rtÞ�1f �1EP� L � ozRH � Kf �1bey 	dz ð12aÞ
P is defined in Eq. (5f) and E is the total eddy energy (E = EKE + EPE) given by
E ¼ B2
1 þ rtðrdf Þ2N�2 oB1

oz

� �2
" #

K t ð12bÞ
Finally, the divergence of the Reynolds stress is computed to be
r � R ¼ ðrH þ LozÞ � RH � ð1þ rtÞ�1f �1EPþ Kf �1bey ð12cÞ

As shown in Section 10, the first term in (12c) is contributed only by the geostrophic component of
the mesoscale velocity while the remaining terms are contributed by the product of geostrophic
and a-geostrophic components. The largest contribution to (12c) comes from the first term since
the remaining terms are O(10�1) smaller.

7.2. Shear contribution

The above results do not account for shear in the mean velocity field u. If one accounts for such
terms, one obtains the additional term (Appendix E)
r � FmðshearÞ ¼ mmðmodelÞðrH þ LozÞ2��u ð12dÞ
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where mm � km � 103 m2 s�1. As expected, (12d) represents an upscale gradient and it acts like a
source for the mean velocity. In conclusion, the full mesoscale contribution to the mean momen-
tum equations (10a) is given by
r � Fm � r � Rþr:FmðshearÞ ð12eÞ

With (12c,d) and the typical values j��uj � 10�2 m s�1, k � 10�2 m2 s�2, $ � 10�6 m�1, we obtain
r � Fm ¼ ðrH þ LozÞ � RH|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
10�8

�ð1þ rtÞ�1f �1EP|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
10�9

þKf �1bey|fflfflfflfflffl{zfflfflfflfflffl}
10�10

þr � FmðshearÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
10�11

ð12fÞ
Therefore, the Reynolds stresses are the largest contribution. At the same time, they are also larger
than the non-linear terms contained in the lhs of Eq. (10a) since
D��u=Dt ¼ o��u=ot þ ��u � rH��u|fflfflfflffl{zfflfflfflffl}
10�10

ð12gÞ
Thus, since in OGCMs the non-linear, advective terms (12g) are accounted for, there is no jus-
tification in neglecting the Reynolds stresses which are considerably larger.
8. Generalized Eliassen–Palm theorem

8.1. Transformed Eulerian formalism

In this representation, the divergence of the Eliassen–Palm tensor is given by (10i) which
we now transform as follow. The potential vorticity (PV) q00 ¼ f00 þ f ozðq00=qzÞ, the PV-flux

Fq � u00q00, the relative vorticity flux (RV) Ff � u00f00 and the eddy-induced velocity are related by
Fq ¼ Ff � ðf þ �fÞuþ ð13aÞ

The geostrophic and a-geostrophic components of Ff have been computed to be
Fg
f ¼ �ez �rH � s; Fag

f ¼ ð1þ rtÞ�1f �1Kez �P ð13bÞ
where the tensor s is given by (11b,c). The two components of Ff are of the same magnitude. Eq.
(10i) thus becomes
r � E ¼ �e� Fq �r � Rþ e� Ff þr � uM��u ð13cÞ
which we consider a generalized Eliassen–Palm theorem. Using the typical values j��uj � 10�2 m s�1,
u+ � 10�3 m s�1, K � 10�2 m2 s�2, $ � 10�6 m�1, f � 10�4 s�1, rd � 3 · 104 m, a scale analysis of
the terms in the rhs of (13c) reveals the sequence
r � E ¼ � e� Fq|fflfflffl{zfflfflffl}
10�7

�r � R|fflffl{zfflffl}
10�8

þ e� Ff|fflffl{zfflffl}
10�9

þr � uM��u|fflfflfflffl{zfflfflfflffl}
10�11

ð13dÞ
On this basis, one may conclude that it is permissible to retain only the first term in (13d). If so,
the TEM momentum equation (10g) becomes
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��ut þ u# � r��uþ f ez � u# ffi �q�1
0 rH

��p� ez � Fq ð13eÞ

which is the form used in many oceanic studies (e.g., Lee and Leach, 1996; Wardle and Marshall,
2000). However, if one carries out the same scale analysis in the mesoscale terms on the lhs of
(13e), with (10h), one obtains
��ut þ ð��uþ uþÞ � r��u|fflfflfflfflffl{zfflfflfflfflffl}
10�11

þ f ez � ðuþ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
10�7

þ ��uÞ ffi �rH��p � ez � Fq|fflfflffl{zfflfflffl}
10�7

ð13fÞ
If one keeps only the largest term on the lhs, the latter just cancels the last term on the rhs of (13f),
leaving no mesoscale terms, a conclusion that cannot be physically correct. The reason is that given
the zeroth-order cancellation, one must keep the second term in (13c). In that case, Eq. (13e)
changes to
��ut þ u# � r��uþ f ez � u# ffi �rH
��p� ez � Fq �r � R ð13gÞ
Since, as before, the largest term in the lhs of (13g) cancels the second term on the rhs, this leaves
as the first non-zero term the gradient of the Reynolds stresses. This is the same conclusion one
arrives at in the EM formalism, Eq. (12f).

The above analysis shows that Eq. (13e) is not the correct form of the TEM momentum equa-
tions for it keeps only zeroth-order terms which cancel each other out leaving no trace of meso-
scale influence. The correct procedure requires that one keeps the next term and that brings the
EM and the ETM formalism in full agreement. In conclusion, use of either formalism requires
the knowledge of the Reynolds stresses.

8.2. Sverdrup relation

Since the Sverdrup relation (Pedlosky, 1998) has played a major role in the study of ocean
dynamics, it seems natural to inquire about the effects of mesoscales since the original derivation
neglects the non-linear terms in the momentum equations. Taking the curl of (10a) and including
the mesoscale-induced Reynolds stresses, (10b) and (12c), we obtain a new Sverdrup relation. For
example, keeping only the first term in (12c) gives
bv ¼ f
ow
oz|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Oð1Þ

þMðzÞ|ffl{zffl}
Oð0:1Þ

ð13hÞ
where the mesoscale term M(z) is given by
MðzÞ ¼ Kzðez � LÞ � rHUz; U ¼ lnðq=KÞ ð13iÞ

In (13i), az = oa/oz, b = 2XR�1cosh, f = 2X sinh, h is the latitude and R is the earth�s radius.

Two considerations are of interest. First, using typical values, M(z) is estimated to be of order
O(0.1) of the standard Sverdrup terms; second, integration of (13h) over z gives
�v ¼ A tghþ Bb�1 ð13jÞ

where
�v ¼
Z

vdz; A ¼ R
Z

dz
ow
oz

; B ¼
Z

dzMðzÞ ð13kÞ
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While the proper choice of the lower limit of the z-integration is discussed in Wunsch and Roem-
mich (1985), it is clear from (13j) that as one approaches the equator, the first term becomes
increasing small while the mesoscale term remains finite. As discussed in Pedlosky (1998), without
mesoscales there is no interior flow crossing the equator which is then relegated to the western
boundaries where Sverdrup�s relation no longer holds. In the presence of mesoscales, a non-zero
meridional crossing ð�v 6¼ 0Þ at the equator is allowed.
9. Derivation of the model results: Mean density equation

As discussed in the Introduction, transforming from isopycnal coordinates is rather complex
process due to the random nature of the density field. However, the main contributions can be
sorted out thanks to the existence of the small parameter h0=�h where h = oz/oq is the layer thick-
ness in isopycnal coordinates. In fact, we have
h0

�h
¼ oz0

oz
� � z0H�1 ð14aÞ
where z 0 represents the characteristic variation of a level z(q) which is �102 m (Richardson, 1993),
whereas the typical scale height H is P103 m. Thus, the ratio (14a) is �0.1. In reality, it is even
smaller if one considers the filling factor of the eddies within a given volume which is typically
a few tens of a percent. Then, z02 � 103 m2 and the ratio (14a) becomes �3 · 10�2. Thus, the coor-
dinate transformation problem can be treated perturbatively in powers of h0=�h. Such an approach
is developed in Appendix A (see also McDougall, 1998 and McDougall and McIntosh, 2001)
where we derive the transformation formulae for the eddy fields. Using such formulae, one can
express second-order moments in level coordinates in terms of the corresponding moments in iso-
pycnal coordinates developed in OM1.

Eddy-induced velocity. We begin by considering the eddy-induced velocity. To this end, it is suf-
ficiently to take into account the transformation formulae of Appendix A in the lowest order of
h0=�h (see also McDougall, 1998)
��qz ¼ �h
�1
; q00 ¼ �z0��qz; u00 ¼ u0; ��u ¼ �u ð14bÞ
The first of Eq. (1d) then becomes
�huþ ¼ ðz0u0Þq ð14cÞ
Differentiating the product (z 0u 0) yields u+ = u* + u** where u* is the bolus velocity defined in
OM1 (Eq. (D.2)) whereas u�� ¼ h�1z0u0q. Using the geostrophic relation
u0q ¼ ðg=fq0Þ½ez �rz0	 ð14dÞ
we obtain
u�� ¼ �ðN 2=f Þ ez �r 1

2
z02

� �� �
ð14eÞ
With f � 10�4 s�1, $ � 10�6 m�1, N2 � 10�5 s�2, we obtain u** � 10�4 m s�1 which is an order of
magnitude smaller than u* � 3 · 10�3 m s�1. The estimate of u** is confirmed by computing (14e)
in the framework of the present model
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u�� ¼ �ðN 2=f Þ½ez �rðK=N 2Þ	 ð14fÞ

which yields the same value of u**. Thus, we can take u+ = u*. What remains to be done is express
the mesoscale eddy-induced velocity in terms of level coordinates. Using Eqs. (17a–c) of OM1, we
obtain Eqs. (4) cited above.

The R-term. We begin by considering the dynamic equation for the variance of the buoyancy
fluctuations in the adiabatic approximation (McDougall and McIntosh, 1996).
Dt
1

2
b002 þr � 1

2
U00b002 ¼ �N 2R ð14gÞ
where Dt ¼ o=ot þU � r. It was argued by McDougall and McIntosh (1996) that the triple cor-
relation term is negligible. Furthermore, it was also suggested by Treguier et al. (1997) to consider
the stationary limit in which case (14g) becomes
N 2R ¼ � 1

2
U � rb002 ð14hÞ
To evaluate (14h), we use the relation between the eddy potential energy EPE and the buoyancy
variance
EPE ¼ 1

2
N�2b002 ð14iÞ
Then, Eq. (14h) gives
N 2R ¼ �U � rðN 2EPEÞ ð14jÞ

Since the vertical and horizontal contributions to the scalar production are of the same order, we
may evaluate R using only the horizontal one. Using the characteristic values
j u j� 10�2 m s�1; r � 10�6 m�1; EPE � K � 10�2 m2 s�2 ð14kÞ

we obtain
R � 10�10 m2 s�3; Rz � 10�13 m s�3 ð14lÞ

which must be compared with the terms containing u+, w+ in Eq. (1c)
uþ � rHb � wþN 2 � uþHL�1N 2 � 10�11 m s�3 ð14mÞ

where we have used N2 � 10�5 s�2 and u+ � 10�3 m s�1. Thus, one is led to conclude that the
terms (14m) exceed Rz by two orders of magnitude and that the latter can be neglected. This con-
clusion is however incorrect since it follows from (14h) which is the stationary limit of Eq. (14g).
Such a limit is impossible in the adiabatic limit underlying (14g). In fact, in general the complete

otb
002 equation consists of production and dissipation terms of the density variance and in the sta-

tionary case the two contributions balance out. However, in the adiabatic approximation dissipa-
tion is absent and such balance cannot exist. We must substitute the left hand side of (14g) with
the adiabatic growth rate of the density variance which, because of relation (14i), is proportional
to the adiabatic growth rate of the eddy potential energy RW. Thus, when R is larger than the dif-
fusion term in (14g), we have
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RW ¼ �R ð15aÞ

To evaluate R, we adopt RW � ed which in OM1 was estimated to be of the order 10�8 m2 s�3, a
value consistent with the data. Therefore, from (15a) we obtain
R � 10�8 m�2 s�3 Rz � 10�11 m s�3 ð15bÞ
The latter is of the order of (14m) and thus the R-term in (1d) cannot be neglected. To express R in
terms of the large scale fields, we use the fact that the characteristic time of eddy energy
L=u � 108 s is much longer than the time to achieve the virial relation (for simplicity of notation
we call W � EPE), eW �

R
W dz ¼ rt

eK between eddy potential and kinetic energy per the unit
area. The latter time is of order rd/u

0 � 105–106 s. This implies that the vertical profiles of RW

and W are proportional to each other. Thus, we may write
RW ðReW þ ReKÞ�1 ¼ W ð eW þ eK Þ�1 ð15cÞ
where
EPE ¼ 1

2
N 2z02 ¼ 1

2
q�2
0 N�2 oB0

oz

� �2

ð15dÞ
Next, from Appendix D we have that
B02 ¼ 2rtq
2
0f

2r2dK tB2
1 ð15eÞ
which transforms Eq. (15d), to its final form
EPEðzÞ ¼ rtðfrd=NÞ2K t

oB1

oz

� �2

ð15fÞ
which is Eq. (7a). As usual, the z-dependence originates from the first baroclinic mode eigenfunc-
tion B1(z). In the adiabatic approximation, the denominator of the left hand side of Eq. (15c)
equals the rate of production of total eddy energy PT given (6c). Therefore, solving (15c) for
RW, substituting in (15a), after some manipulations and use of the boundary conditions (OM1,
D.9c), we obtain Eqs. (7a)–(7c).

Surface kinetic energy Kt. As discussed in OM1, the surface kinetic energy is obtained by con-
sidering the relations
PT ¼
Z

dzed ¼ g�1

Z
dzek ¼ ð3grdÞ�1K3=2

t

Z
dzC3=2ðzÞ ð15gÞ
where use was made of the Kolmogorov spectrum and where the function C(z) is given by Eq. (5b)
of the text.
10. Derivation of the model results: Mean momentum equations

There are the two possible ways of finding the eddy contribution to the momentum equation
(10a). They are either through Eqs. (10b–f) or through (10g). We have performed both computa-



V.M. Canuto, M.S. Dubovikov / Ocean Modelling 11 (2006) 123–166 153
tions with the same final result. We begin by separating the geostrophic and a-geostrophic contri-
butions into (10e). We have the two exact relations
u00 � rHu00 ¼ ez � Ff þrHK; u00g � rHu00g ¼ ez � Fg
f þrHK ð16aÞ
where we do not affix the subscript ‘‘g’’ to K since the latter is known to be contributed mostly by
the geostrophic component. From Eqs. (10c) and (11a) and considering that the geostrophic
velocity is much larger than the a-geostrophic one, one derives that ðrH � u00g ¼ 0Þ
u00g � rHu00g ¼ rH � u00gu00g ¼ rH � RH ¼ rH � ðKdH þ sÞ ð16bÞ
From the second of (16a) and (16b), we conclude that
ez � F
g
f ¼ rH � s F

g
f ¼ �ez �rH � s ð16cÞ
which, from (16b), implies that
rH � RH ¼ ez � F
g
f þrHK ð16dÞ
As for the ageostrophic component Fa
f , we compute it directly from definition in (10f). Making use

of Eqs. (1f) and (21) of OM1, we obtain (Appendix B)
Fa
f ¼ �ðrtr2df Þ

�1Kðu� ud þ cRÞ ð16eÞ

ud ¼ hui þ ð1þ rtÞ�1
cR � fr2dð1þ r�1

t Þ�1
eq � hozLi ð16fÞ
Next, we study the second term in (10d). We begin with the field w00 given by
w00
z ¼ �rH � u00 ð17aÞ
We then substitute (A.18) and (A.19), keep only the first terms and obtain
w00
z ¼ �rq � u0 ð17bÞ
In Appendix C we show that, to first-order, the corrections to (17b) cancel out. Fourier trans-
forming (17b) and using Eqs. (4g–i), (10a,b) of OM1, we obtain
w00
z ðkÞ ¼ �ik0up ¼ k20ðfqÞ

�2½~mþ ik � ðud � �u� cRÞ	B0ðkÞ ð17cÞ

which shows explicitly that only the a-geostrophic component of u 0 contributes to the right hand
side, see Eq. (5e) of OM1. Next, we substitute Eqs. (11a–f) of OM1 into (17c) and keep terms of
the zeroth- and first-order in Xs taking into account that in the square brackets of (17c) the first
term ~m dominates while all the other terms are of the first-order in Xs. Using the geostrophic rela-
tions, we transform (17c) to
w00
z ðkÞ ¼ ozð½~vþ ik � ðu� udÞ	z0ðkÞ � ig�1k � uqÞB0ðkÞ � vzz

0ðkÞ ð17dÞ

Integrating over z and applying the geostrophic relation (B.2) and the second relation (A.19), we
obtain
w00ðkÞ ¼ ~vz0ðkÞ þ ik � ðu� udÞz0ðkÞ þ u0ðkÞ � rq�z� g�1

Z q

qs

~vqz
0ðkÞdq ð17eÞ
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Next we express the field u00z entering relation (10d) in terms of fields in the isopycnal system. To
this end, we differentiate relation (A.18). Fourier transforming, we get
u00z ðkÞ ¼ qzu
0
qðkÞ � uzzz0ðkÞ � uzqzz

0
qðkÞ ð17fÞ
The first term in the rhs is the largest. In Appendix C we show that the contribution to (10d) due
to the other terms in (17f) is at least an order of magnitude smaller than the first term. Thus, we
write Eq. (17f) in a different form which accounts for only the main term
u00z ðkÞ ¼ qzu
0
qðkÞ ¼ �iN 2f �1ez � kz0ðkÞ ð17gÞ
The second equality is just the geostrophic relation (B.2) in Fourier space. Thus, with Eqs. (17e,

g), we have modeled the ingredients of the term w00ozu00 � A. Defining
dðk� k0Þ~AðkÞ ¼ Rew00ðkÞu00�z ðk0Þ ð18aÞ

one needs to integrate (18a) over k 0 and n = k/jkj. In accordance with the general definition of
spectra, we have
AðkÞ ¼ k
Z eAðkÞdn; ð18bÞ
Substituting expressions (17e,g) into (18a), we notice that the contributions of the first and last
terms in the right hand side of (17e) vanish because of the factor i in front of the last expression in
(17g). The other two terms of (17e) yield the following result:
AðkÞ ¼ k2f �1ð�u� udÞ � ezW ðkÞ þ ðrq�zÞ � ozRHðkÞ ð18cÞ

where RH(k) and W(k) � EPE(k) are the spectra of the horizontal Reynolds stress and potential
energy. As discussed in OM1, the integration (18c) over k reduces to substituting the spectra with
the correspondent functions. In addition, we express �z and rq�z in terms of level coordinates. The
result is
w00ozu00 ¼ �ðrtr2df Þ
�1W ez � ðu� udÞ þ L � ozRHðkÞ ð18dÞ
where W is given by (15d). Substituting Eqs. (16c,d) and (18d) into (10d), we obtain Eq. (12c).
11. Conclusions

We have presented a dynamical mesoscale model in z-coordinates. As in OM1, where we de-
rived the dynamical model in isopycnal coordinates, we have worked out the mesoscales contri-
butions to the mean buoyancy and mean momentum equations. In the former, we have found
the expression for the eddy-induced velocity, Eqs. (4a–c), the first term of which is of the GM
form. As discussed in OM1, the necessity of additional terms, not directly related to density gra-
dients, was first suggested by Bryan et al. (1999) on the basis of an eddy-resolving ocean code. The
new terms in (4a) may be the ones predicted to exist by Bryan et al. (1999). The mesoscale diffu-
sivity which is undetermined in the GM model, is here computed in terms of the resolved scales,
Eqs. (4b). The residual diapycnal flux R in Eqs. (1c,e) is given by Eqs. (7d–g). We show that it is of
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the same order as the other mesoscale terms and thus it is not negligible. This result agrees with
the conclusions of Gille and Davis (1999) and McDougall (2004) who employed eddy-resolving
ocean codes to compute R and also concluded that it is not negligible. The boundary conditions
(1f) and (1g) are satisfied by the model results.

As for the mean momentum equations, to the best of our knowledge, this is the first model that
explicitly derives an expression for the divergence of the momentum fluxes (Reynolds stresses), the
Eliassen–Palm and PV fluxes without using a heuristic model. The so-called default down-gradient
approximation is not a model for mesoscales and represents processes at much smaller scales. The
mesoscales contribution (11) and (12) exhibit the horizontal gradient of the eddy kinetic energy, the
mean flow and the b-term. Since data (Schmitz, 1976; Wyrtki et al., 1976, Fig. 4; Wunsch, 1981)
show that there are large horizontal gradients of eddy kinetic energy, their presence in the model
is a welcome feature. We have also shown that the Reynolds stresses contribute a term that is larger
than the non-linear terms in the mean velocity field. Thus, accounting for the latter while neglecting
the former (as done in all OGCMs) is not correct. We further show that in the TEM formalism, it is
not sufficient to take into account the PV-flux only since, to a large extent, this term is cancelled by
the mesoscale terms in the residual mean circulation. After the cancellation, the first term is the
Reynolds stresses which must therefore be accounted for.

The mesoscale effect on the Sverdrup relation was also studied and shown to introduce a non-
negligible modification of the order of 10%. Interestingly, as one approaches the equator, meso-
scales allow for meridional currents while the standard Sverdrup relation does not.

Two major topics remain to be studied. First, since the mesoscale model shows that in addition
to the eddy-induced velocities the buoyancy equation contains a residual diapycnal flux, the latter
must also be present in the temperature/salinity equations but it has thus far been neglected since
R has always been taken to be zero. The second problem to be investigated is the role of the
strongly diabatic mixed layer on the mesoscale field.
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Appendix A. Transformation from isopycnal to level coordinates

Given the two random fields q(r,z) and z(r,q), we split them into average and fluctuating com-
ponents. Omitting for simplicity the variable r, we write
zðqÞ ¼ �zðqÞ þ z0ðqÞ; qðzÞ ¼ qðzÞ þ q00ðzÞ ðA:1Þ
For arbitrary z and q, we have the exact relations
q ¼ q½zðqÞ	; z ¼ z½qðzÞ	 ðA:2Þ
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Assuming z 0 to be small, we substitute the first relation (A.1) into the first of (A.2) and expand.
Keeping only terms to the first-order in z 0, we obtain
q ¼ q½�zðqÞ þ z00ðqÞ	 ¼ q½�zðqÞ	 þ qz½�zðqÞ	z0 þOðz02Þ
Substituting here the second relation (A.1), we obtain
q ¼ q½�zðqÞ	 þ q00½�zðqÞ	 þ qz½�zðqÞ	z0 þ O2 ðA:3Þ
where O2 is a second-order term in the fluctuating fields, that is
O2 ¼ q00
z ½�zðqÞ	z0 þOðz02Þ
If we choose a fixed value of q, then lhs of (A.3) does not contain fluctuating components. This
implies that the fluctuating part of the rhs also equals zero. Thus, with an accuracy up to the sec-
ond-order terms, we obtain
q ¼ q½�zðqÞ	 ðA:4Þ

q00½�zðqÞ	 þ qz½�zðqÞ	z0ðqÞ ¼ 0 ðA:5Þ

An analogous procedure applied to the variable z(q) leads to the following relations:
z ¼ �z½qðzÞ	 ðA:6Þ

z0½��q	 þ �h½qðzÞ	q00ðzÞ ¼ 0 ðA:7Þ

Since in (A.4, 6) q and z are arbitrary, one may choose
q ¼ qðzÞ ðA:8Þ

Then, (A.6) yields
z ¼ �zðqÞ ðA:9Þ

Relations (A.8, 9) imply that the functions �zðxÞ and qðxÞ are the inverse of each other, a
property which is fulfilled only to the first-order in fluctuating fields. Use of (A.8, 9) in (A.5, 7)
yields
q00ðzÞ þ qzðzÞz0 ¼ 0 ðA:10Þ

z0ðqÞ þ �hðqÞq00 ¼ 0 ðA:11Þ

which proves that
qzðzÞhðqÞ ¼ 1 ðA:12Þ

provided that q and z are related by (A.8) or (A.9). The last result becomes an identity when one
neglects the random nature of q(z) whereas when accounting for the random nature of the vari-
ables, (A.12) contains a correction of the second-order in fluctuating fields. Next, we consider the
velocity field in isopycnal and level coordinates and split it into mean and fluctuating parts
uðqÞ ¼ �uðqÞ þ u0ðqÞ; uðzÞ ¼ uðzÞ þ u00ðzÞ ðA:13Þ
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We begin with the exact relation
uðzÞ ¼ u½qðzÞ	 ðA:14Þ

and substitute the decomposition (A.1) for q(z). Expanding the right hand side of (A.14) in a
power series in q00(z) and keeping terms of the first-order, we obtain
uðzÞ ¼ u½qðzÞ	 þ uq½qðzÞ	q00ðzÞ ðA:15Þ

Substituting the first of relations (A.13), separating mean and fluctuating parts and using (A.10),
we get
u½�zðqÞ	 ¼ �uðqÞ � �hðqÞ�1z0ðqÞu0qðqÞ ðA:16Þ

u00½�zðqÞ	 ¼ u0ðqÞ � �hðqÞ�1�uqðqÞz0ðqÞ ðA:17Þ

Notice that a formal evaluation of the second term in the right hand side of (A.16) based on the
mean square roots of the correlating fields, yields a result which is smaller than the first term by an
order of magnitude. But in reality, due to a weak correlation, the second term is smaller than the
first one by more than two orders of magnitude and may be neglected. In fact, as one can see, the
discussed term equals �u** defined in Eq. (14e). Below Eq. (14e), we have evaluated u** and
shown that typically it is �10�4 m s�1, more than two orders of magnitude smaller than �u. Thus,
the last relation (14b) is satisfied to high accuracy. On the contrary, in (A.17) to order h0=�h, the last
term must be accounted for. For further use, we transform this term using h = zq, Bq = gz, (A.12)
and the last relation of (14b). Then (A.17) yields
u00 ¼ u0 � g�1uzB0
q ðA:18Þ
It is worth noticing that results of Appendix A are not new. Thus, relations (A.8, 9) are fre-
quently used by several authors: for example, Eq. (14) of Gent et al. (1995), Eq. (4) of Treguier
et al. (1997), Eqs. (B.4), (B.8), (B.12) of Smith (1999). Relations (A.10, 11) were employed, for
example, by Treguier et al. (1997), Rix and Willebrand (1996) and McDougall and McIntosh
(1996). Equations analogous to (A.16, 17) were obtained by McDougall (2001). Nevertheless,
in our opinion, it is useful to present a concise review of transformation formulae that are
essential to our derivations. For references, we also recall the well known transformation
relations
rH ¼ rq � Loz; L ¼ �rq=qz ðA:19Þ
In addition, up to the first-order of h0=�h, we may adopt
eq ¼ ez ¼ eV ðA:20Þ
Appendix B. Derivation of Eq. (16e)

To transform the flux Ff00 defined in (10f), we need the corresponding transformations for u00

and f00. For the former, the transformation is given in (A.18) which we also use to derive the trans-
formation for f00. To this end we substitute (A.18)–(A.20) into (10f). Substituting the first relation



158 V.M. Canuto, M.S. Dubovikov / Ocean Modelling 11 (2006) 123–166
(A.19), we notice that the $-operator in the first term is of order r�1
d while the second term is of

order L�1. Thus, the second operator of (A.19) is a small correction. Using the definition of the
relative vorticity f = ($q · u)eq for the case of fluctuating fields, we obtain
f00 ¼ f0 þ ðg�1uz � B0
q � u0q �rqÞ � eq ðB:1Þ
where we keep the leading term (which equals to f 0) as well as the main correction to it and neglect
the term, which is obtained by the action of the second operator of (A.19) on the second term of
(A.18). Now we notice that, to the main order, both correction terms in (B.1) equal each other.
This fact can be checked by applying the geostrophic relations
u0q ¼ ðqf Þ�1
eq �rqB0

q ðB:2Þ

uz ¼ �gðfqÞ�1
eq �rHq ðB:3Þ
Next, we Fourier transform (B.1) using Eq. (10a) of I. We get
f00ðkÞ ¼ f0ðkÞ � 2fqg�1n� eq � uzusðkÞ ðB:4Þ

Now we consider the vorticity flux density in Fourier space in level coordinates which is given by
dðk� k0ÞFf00 ðkÞ ¼ Ref00ðkÞu00�ðk0Þ ðB:5Þ

Substituting here relations (B.4), (A.18), Eqs. (4g–i) and (10b) of I, we derive
dðk� k0Þ½Ff00 ðkÞ � Ff0 ðkÞ	 ¼ fqg�1½uz � 2ðn0 � eVÞn� eV � uz	ReusðkÞu�s ðk0Þ ðB:6Þ

where in right hand side we keep only the main order of terms correcting the approximate equality
Ff00 ðkÞ ¼ Ff0 ðkÞ. Further, to obtain a relation for the spectra, we need to integrate (B.6) over
n = k/k. Since the eddy field us(k) is axially symmetric to the main order, the integration of right
hand side (B.6) yields zero. Thus, to the same order, the corrections to (16e) vanishes. This con-
clusion is certainly valid if the corrections due to each term in right hand side of (B.6) do not ex-
ceed (16e). To check this condition, we integrate the first term in right hand side of (B.6) over k, k 0

and use the definition of the energy spectrum E(k), (A.1d) of I. The integration yields
fqg�1uzoqK ¼ �fN�2Kzuz ðB:7Þ

Taking into account that oz � H�1 and rd � Nf�1H, we conclude that (16e) and (B.7) are of the

same order. Thus, the cancellation to the main order when integrating the right hand side of (B.6),
ensures the validity of (16e).
Appendix C. Correction terms to Eqs. (17b) and (18c)

Substituting the first relation (A.19) into (17a), we notice that as in the case considered in
Appendix B, the second operator of (A.19) is a small correction. However, this is no longer the
case when the operator (A.19) is applied to u 0 since the geostrophic components of u 0 yields zero.
Thus, we have to account for corrections. Substituting (A.18, 19) into (17a), and keeping terms up
to the first-order (i.e., neglect only the term coming from the second terms of (A.18, 19), we obtain
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w00
z ¼ �rq � u0 þ g�1u;z � rqB0

q � u0q � rHq ðC:1Þ
Using the geostrophic relations (B.2, 3) one can check that the last two terms cancel each other.
Thus, relation (17b) is valid. Next, we compute the contribution of the last two terms (17f) to
spectra (18a–c). Substituting these terms, together with (17e) into (18a), and using geostrophic
relations, we obtain
dAqz ¼ �~vf �1N 2ozðW =N 2Þe�rHq� 2~vWf �1e�rHqz ðC:2Þ
Both terms are of the same order. To evaluate them, we take into account that
~vr�1

d K1=2 � 3 � 10�6 s�1. Then from (C.2) we get dA � 3 · 10�10 m s�2 that is smaller than
the dominating term in (17f) by more than an order of magnitude. Thus, dA may be
neglected.
Appendix D. Eddy potential energy in terms of large scale fields

As we discussed in I, to the lowest order in Xs, the field B 0 is proportional to the eigenfunction
B1 of (5c), i.e.,
B0 ¼ AB1 ðD:1Þ

To compute A, we express eddy kinetic energy in terms of B 0 using Eqs. (4g–i), (7a) and (10b) of I
K ¼ 1

2
r�1
t ðrdq0f Þ

�2B02 ðD:2Þ
Substituting (D.1), we obtain
K ¼ 1

2
r�1
t ðrdq0f Þ

�2A2B2
1 ðD:3Þ
On the other hand, to the lowest order in Xs, Eqs. (24a)–(26) of I yield K ¼ KsB2
1. Substituting

(D.3), we get
A2 ¼ 2rtðrdq0f Þ
2K t ðD:4Þ
Using (D.1, 4), we obtain (15e).
Appendix E. Derivation of (12d)

To account for the gradients of the mean velocity gradient, we must carry out the following
substitution in Eqs. (I.5)
�u ! �uþ iðo�u=oxaÞo=oka ðE:1Þ

Since Eqs. (I.5) are written in k-space, differentiations are understood at constant q. In addition,
in rhs of Eq. (I.5a) one must add a gradient term equivalent to the substitution
x ! xþ icacbðo�ua=oxbÞ ðE:2Þ
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where
~c ¼ n� e; n ¼ k=k ðE:3Þ
and e, the unit vector along �$3q, is almost coincides with ez. Taking into account the identity
cacb ¼ dab � nanb ðE:4Þ
and that the mean velocity is almost geostrophic, i.e.
rq � �u ¼ 0 ðE:5Þ

one can rewrite (E.2) as follows:
x ! x� inanbðo�ua=oxbÞ ðE:6Þ

The above modifications of Eqs. (I.5) results in corrections of the basic model equations (I.11).
First, in the expressions (I.11e,f) for X1, X2, we must make the substitution (E.1) and second,
in the expression for X2 only, substitution (E.6) must be carried out. This results in the following
substitution in Eq. (I.12d):
X ! X� in � o�u=oxbðnb þ ko=okbÞ ðE:7Þ

Because of relation (I.10b), the geostrophic component of the eddy velocity us also satisfies the
basic equations (I.11) whose solution we expand in powers of the mean velocity gradient
us ¼ u0 þ u1 þ � � � ðE:8Þ

Substituting this expansion into (I.11) and using Eqs. (I.12) and (E.7), we obtain the following
equation in the first-order of X and of the mean velocity gradient:
o2

oq2
þ K

� �
u1 ¼ �Ksn � o�u=oxa½ð1þ rtÞ�1na þ ko=oka	u0 ðE:9Þ
Neglecting the derivatives in the lhs and considering that the main contribution to u0 is axisym-
metric, we rewrite (E.9) as follows:
u1 ¼ �snanbðo�ua=oxbÞ½ð1þ rtÞ�1 þ ko=ok	u0 ðE:10Þ

since in the case of axi-symmetric functions, the operator in (E.10) satisfies the relation
ko=oka ¼ kao=ok ðE:11Þ

Next, we consider the large scale momentum equation in isopycnal coordinates (I.1d) and present
the eddy contribution to its rhs in vector form as
Ai
j ¼ u0kou

0
j=oxk ðE:12Þ
Substituting only the geostrophic component of u 0 and using (E.8), we obtain
dAi
j ¼ u0kou

1
j=oxk ðE:13Þ
Since the relation between the fields u0 and u1 (E.10) is given in k-space, we can express the spec-
trum of dA(k) through the energy spectrum E(k) which is contributed mainly by the component
u0. Using the relation (4i) of I and (E.3), we obtain
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u0;1ðkÞ ¼~cu0;1ðkÞ ðE:14Þ

and (E.4, 10), we obtain
dAiðkÞ ¼ 1

2
s ð1þ rtÞ�1EðkÞ þ 1

2
k2

o

ok
½EðkÞ=k	

� �
o2�u

ox2a
ðE:15Þ
In deriving this result, we made use of the following relation:
hninjnlnmi ¼ ð1=8Þðdijdlm þ dildjm þ ddjlÞ ðE:16Þ

where the averaging is performed over directions of n. Since (E.15) is valid near the maximum of
the spectrum E(k), we have
k2
o

ok
½EðkÞ=k	 ¼ �EðkÞ ðE:17Þ
Thus
dAiðkÞ ¼ 1

4
sð1þ rtÞ�1ð1� rtÞEðkÞ

o2�u

ox2a
ðE:18Þ
Integrating over k and using (I.11d), we get
dAi ¼ mir2
q�u ðE:19Þ

mi ¼ ½ð1� rtÞð4rtÞ�1	K
~v

ðE:20Þ
Transforming (E.19) to z-coordinates, we obtain (12d) with mm = mi.
Appendix F. Horizontal component of the Reynolds stress, RH

In accordance with our approach, we compute the Reynolds stress RI in isopycnal coordinates
which is two-dimensional, and then transform the result to z-coordinates to obtain RH. RI is con-
tributed mostly by the geostrophic component of the eddy velocity field. Thus, we begin by com-
puting the spectrum
RIðkÞ ¼ k
Z

dnfRI ðkÞ ðF:1Þ
where we account for only the geostrophic component of the eddy velocity. In accordance with
Eqs. (4i), (5e) of I, we can write
eRIðkÞdðk� k0Þ ¼ ðe� nÞðe� n0ÞuðkÞu�ðk0Þ ðF:2Þ

where n, n 0 are the unit vectors in the directions of k, k 0, and e is the unit vector in the direction of
�gradq which in this approximation coincides with ez. In the zeroth approximation in the small
parameter Xs in the eigenvalue equation (11a), (12c) of I, the equation has no external directions
and therefore spectrum (F.2) is axisymmetric. Thus, to obtain non-axisymmetric terms of (F.2),
we need to expand the field u(k) in (F.2) in powers of Xs
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uðkÞ ¼ u0ðkÞ þ u1ðkÞ þ u2ðkÞ þ � � � ðF:3Þ

Compared to u0(k), the term u1(k) contains the phase factor i. Therefore the first-order correc-

tion R1
I vanishes and thus the lowest correction to RI is quadratic in u1(k), i.e., it is R

2
I . At the same

time, the term u2(k) has the same phase as u0 (k) and so the product u0u2 also contributes to R2
I .

The detailed computation of the fields u1(k,z) and u2(k,z) is presented in Appendix G where it is
shown that the main contributions to both fields are baroclinic, i.e., q-independent (in z-coordi-
nates z-independent). They are
ðK0
t Þ

1=2u1ðk; qÞ=u0ðk; qtÞ ¼ iez � I1 � n ðF:4Þ

K0
t u2ðk;qÞ=u0ðk;qtÞ ¼ ðez � I1 � nÞðez � I2 � nÞ þ

1

2
ez � n � K � ez � nþ signB1st Imx2 ðF:5Þ
where the vectors I1, I2 and the tensor K in terms of z-coordinates are given in Eqs. (5e,f) (it is
easy to rewrite them in terms of isopycnal coordinates), x2 is the second-order correction to
the first-order result x1 = k Æ ud and K0

t is the surface kinetic energy in the zeroth approximation.
The computation of x2 is given in Appendix G. Substituting, (G.2), (F.3)–(F.5) into (F.2), we get
K0
tR

2
I ðk; zÞ ¼

1

4
ðI1 � I1 þ 2I1 � I2 þ 2TraceðKþ XÞÞdq þ

1

2
ðI1I1 þ I1I2 þ I2I1 þ KþXÞ

� �
E0ðk;qtÞ

ðF:6Þ

where dq is the 2-D Kroneker tensor within an isopycnal surface, E0(k,qt) is the eddy energy spec-
trum at the surface in the zeroth approximation. In deriving (F.6), we have used the relation
ð2pÞ�1

Z
e� ne� nA � nB � ndn ¼ 3

8
A � Bdq �

1

8
ðABþ BAÞ ðF:7Þ
where A, B are constant vectors. From (F.6), we obtain (11a–c).
Appendix G. Computing u1,2(k) in expansion (F.3) and x2 in (F.5)

Using the first relation (10b) of I, one can find the expansion (F.3) by computing the expansion
B 0 = b0 + b1 + b2 + � � � in powers of Xs. In the spirit of the second relation of (14a) of I, we will
search for the both b1,2 in terms of the eigenfunctions Bn(q) of the eigenvalue problem (6d) of I. In
Section XII of I we have shown that b1 is dominated by the barotropic component with n = 0. The
result (24b, c) of I is equivalent to (F.4) above with account of Eqs. (17), (18) of I, Eq. (5e) and
u+ � u*. The equation for the second-order perturbation b2 can be obtained from Eqs. (11), (12)
of I in analogy with Eq. (13a) of I
L̂0b2 ¼ �iXsb1 þ X2
1s

2b0 � ix2sb0 ðG:1Þ

where x2 is the second-order correction to the first-order result x1 = k Æ ud; X and x1 are given in
Eqs. (11e) and (12d) of I. To compute x2, we multiply (G.1) by �hB1ðqÞ and integrate over q. The
integral of the left hand side of (G.1) yields zero since, as pointed out in I, the expansions of the
functions b1, b2 . . . in eigenfunctions Bn(q) do not contain terms with B1. Then, using (F.4), from
the integral of the right hand side we deduce that
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�iCðqÞ1=2x2ðkÞ ¼
1

4
stð1þ rtÞ�2½ðk � I1Þ2 � 4r4

t r
4
dðez �P � kÞ2	 ðG:2Þ
where st is the value of s at the surface. We use the notation ((5e, f) and (5g) for the barotropic
average, as well as relation (17a) of I and the zeroth-order term in the kinetic energy profile
(5b). We solve equation (G.1) for b2 as we solved Eq. (13a) of I. Writing b2 as a series analo-
gous to (14a) of I, and using methodology similar to the one presented in Sc. XII of I, we con-
clude that the main contribution to b2 comes from the term a0B0 which can be found by
multiplying (G.1) by h and then integrating over q. Using (10b), (12), (15a,b) of I, and
u+ � u*, we arrive at (F.5).
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